41.9k views
3 votes
Rhonda wants to take out a 30-year, $280,000 loan with a 4.4% APR. She is considering purchasing 2 points, which will decrease her APR by 0.125% per point. Each point will cost 1% of her loan. Compare her monthly payments WITH and WITHOUT the purchase of the points. HELP!!!

User Rotten
by
5.3k points

2 Answers

4 votes

Answer:

Without Points: $1,402.13

With Points: $1,361.09

Explanation:

User Matt Brewerton
by
6.3k points
2 votes

Given Information:

Loan amount = $280,000

Annual Percentage Rate = APR = 4.4% = 0.044

Number of years = 30

Required Information:

Monthly payment with points = ?

Monthly payment without points = ?

Answer:

Monthly payment with points = $1,361

Monthly payment without points = $1,402.13

Explanation:

The monthly payment can be found using,


MP = P* (r* (1+r)^(n))/((1+r)^(n) - 1)

P is the loan amount.

Where interest rate r is given by


r = (APR)/(12)

Total number of payments n are given by


n = 30*12 = 360

Monthly payment with points:

Rhonda is considering purchasing 2 points and each decreases APR by 0.125%

So the APR becomes


APR = 4.4\% - 0.125(2)\\\\APR = 4.4\% - 0.25\%\\\\APR = 4.15\%

and the corresponding interest rate r is


r = (APR)/(12)\\\\r = (4.15\%)/(12)\\\\r = 0.3458\% \\\\r = 0.003458

Finally, the monthly payment is


MP =280,000* (0.003458* (1+0.003458)^(360))/((1+0.003458)^(360) - 1)\\\\MP =280,000* 0.0048608 \\\\MP = \$ 1,361

Monthly payment without points:

Interest rate r is,


r = (APR)/(12) \\\\r = (4.4)/(12) \\\\r = 0.3667\% \\\\r = 0.003667

Monthly payment is,


MP =280,000* (0.003667* (1+0.003667)^(360))/((1+0.003667)^(360) - 1)\\\\MP =280,000* 0.0050076 \\\\MP = \$ 1,402.13

So monthly payment with points is $1,361 and monthly payment without points is $1,402.13

User Isaac Vidrine
by
6.4k points