98.3k views
1 vote
Find the missing parts of the triangle. (Find angles to the nearest hundredth of a degree.)

a = 7.5

b = 13.3

c = 16.0

1 Answer

3 votes

Answer:


A \approx 27.75^(\circ),
B \approx 55.67^(\circ),
C \approx 96.60^(\circ)

Explanation:

The first two angle can be determined by the Law of the Cosine:


\cos A = (7.5^(2)-13.3^(2)-16^(2))/(-2\cdot (13.3)\cdot (16))


\cos A = 0.885


A = \cos^(-1) 0.885


A \approx 27.75^(\circ)


\cos B =(13.3^(2)-7.5^(2)-16^(2))/(-2\cdot (7.5)\cdot (16))


\cos B = 0.564


B = \cos^(-1) 0.564


B \approx 55.67^(\circ)


\cos C = (16^(2)-7.5^(2)-13.3^(2))/(-2\cdot (7.5)\cdot (13.3))


\cos C = -0.115


C = \cos^(-1) (-0.115)


C \approx 96.60^(\circ)

The sum of internal angles of a triangle must be equal to 180°. Then:


A + B + C = 27.75^(\circ) + 55.67^(\circ) + 96.60^(\circ)


A + B + C = 180.02^(\circ)

Which satisfies the condition described.

User RedGrittyBrick
by
7.2k points