129k views
1 vote
Which shows how to find the value of this expression when x = negative 2 and y = 5?StartFraction 3 squared (negative 2) Superscript 6 Baseline Over 5 Superscript 4 EndFraction

StartFraction 3 (negative 2) Superscript 6 Baseline Over 5 Superscript 4 EndFraction

StartFraction 3 squared (5 Superscript 6 Baseline) Over (negative 2) Superscript negative 4 Baseline EndFraction

StartFraction 3 Over (2) Superscript 6 Baseline 5 Superscript 4 Baseline EndFraction

2 Answers

1 vote

Answer:

C

Explanation:

User Kassym Dorsel
by
7.7k points
5 votes

Answer:

StartFraction 3 (negative 2) Superscript 6 Baseline Over 5 Superscript 4 EndFraction

Explanation:

The given values are
x=-2 and
y=5.

The given expression is


(3x^(3) y^(-2) )^(2)

First, we need to multiply exponents


(3x^(3) y^(-2) )^(2)=3x^(6)y^(-4)

Second, we move the negative exponent to the denominator side


3x^(6)y^(-4)=(3x^(6) )/(y^(4) )

If we replace each value, we have


(3x^(6) )/(y^(4) )=(3(-2)^(6) )/((5)^(4) )

The statement that describes this expression is C.

User Jakov
by
8.3k points