Final answer:
To prove that the sequence defined by the recurrence relation satisfies the formula sn = 3 + n(n + 1), we need to show that the base case holds and then prove the inductive step.
Step-by-step explanation:
To prove that the sequence defined by the recurrence relation satisfies the formula , we need to show that the base case holds and then prove the inductive step.
Base case:
When , we have . This matches the formula, so the base case holds.
Inductive step:
Assume that the formula holds for some . We want to show that it holds for .
Using the recurrence relation, we have:
sn+1 = sn + 2(n+1)
Using the induction hypothesis, we can substitute in the expression:
sn+1 = (3 + n(n + 1)) + 2(n+1)
Expanding the expression:
sn+1 = 3 + n(n + 1) + 2n + 2
Combining like terms:
sn+1 = 3 + n(n + 1) + 2(n+1)
sn+1 = 3 + (n+1)((n + 1) + 1)
This matches the formula for , so the inductive step holds. Therefore, the formula holds for all integers .