Answer:
1170450 yd^2
Explanation:
The first thing is to calculate the necessary perimeter, which would be like this:
2 * a + b = 3060
if we solve for b, we are left with:
b = 3060-2 * a
Now for the area it would be:
A = a * b = a * (3060-2 * a )
A = 3060 * a -2 * a ^ 2
To maximize the area, we calculate the derivative with respect to "a":
dA / da = d [3060 * a -2 * a ^ 2
]/gives
dA / day = 3060 - 4 * a
If we equal 0:
0 = 3060 - 4 * a
4 * a = 3060
a = 3060/4
a = 765 and d
Therefore b:
b = 3060 - 2 * a = 3060 - 1530 = 1530
A = a * b
A = 765 * 1530
A = 1170450 and d ^ 2