Answer:
The sample size required is 2188.
Explanation:
The (1 - α)% confidence interval for the population proportion is:
![CI=\hat p\pm z_(\alpha/2)\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/tmoxct2846t14mxy5cxnn29860e429t5z6.png)
The margin of error for this interval is:
![MOE= z_(\alpha/2)\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/iz199a04449zyo82qbtug3ef4j5w137ewr.png)
The information provided is:
X = 162
n = 462
MOE = 0.02
Assume the confidence level as 95%.
Compute the sample proportion as follows:
![\hat p=(X)/(n)=(162)/(462)=0.351](https://img.qammunity.org/2021/formulas/mathematics/college/n8b45mawivt9omc9f6lj9pz89splycz4f2.png)
The z-critical value for 95% confidence interval is:
![z_(0.025)=1.96](https://img.qammunity.org/2021/formulas/mathematics/college/7d1xmp8gqa5v552e99low0603hoeiuldf3.png)
Compute the sample size required as follows:
![MOE= z_(\alpha/2)\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/iz199a04449zyo82qbtug3ef4j5w137ewr.png)
![n=[(z_(\alpha/2)* √(\hat p(1-\hat p)))/(MOE)]^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/wb45wl5kvzkvb20txtpquood16fri70n9o.png)
![=[(1.96*√(0.351(1-0.351)))/(0.02)]^(2)\\\\=2187.781596\\\\\approx 2188](https://img.qammunity.org/2021/formulas/mathematics/college/q9x0onu70kzn9f4sevtsb7inmwdf5zp5i4.png)
Thus, the sample size required is 2188.