453,629 views
19 votes
19 votes
X= -1/8y2
The focus of the parabola is:
O (0, -2)
O (2, 0)
O (-2, 0)

User MysticXG
by
3.0k points

2 Answers

14 votes
14 votes

x=-1/8y²

Interchange x and y

  • y=-1/8x²

Compare to Vertex form y=a(x-h)²+k

  • a=-1/8

Now

  • 1/4a
  • 1/4(-1/8)
  • -2

.So

Focus (-2,0)

User Jens Boldsen
by
2.4k points
23 votes
23 votes

Answer:

(-2, 0)

Explanation:

Standard form of a parabola with a horizontal axis of symmetry:


(y-k)^2=4p(x-h)\quad \textsf{where}\:p\\eq 0


\textsf{Vertex}=(h, k)


\textsf{Focus}=(h+p,k)

Given equation:


x=-\frac18y^2

Rewrite in standard form:


\implies (x-0)=-\frac18(y-0)^2


\implies -8(x-0)=(y-0)^2


\implies (y-0)^2=-8(x-0)

Comparing with the general standard form:

  • k = 0
  • h = 0
  • 4p = -8 ⇒ p = -2

Therefore:


\textsf{Vertex }(h,k)=(0,0)


\textsf{Focus }(h+p,k)=(0-2,0)=(-2,0)

User Jerry Lee
by
2.9k points