Answer:
![x=(7)/(2) =3.5\\\\y=2](https://img.qammunity.org/2021/formulas/mathematics/college/74ispwanusvof3tpy2ejirfexb3i5eu3hd.png)
Explanation:
The addition method (elimination method) allows us to combine two equations in such a way that the resulting equation has only one variable. Then we can use simple algebraic methods to solve that variable
Let:
![4x-6y=2\hspace{10}(1)\\\\and\\\\2x-y=5\hspace{15}(2)](https://img.qammunity.org/2021/formulas/mathematics/college/rx5c6vt7iszxzcilwes3bkfft3oc6s51rw.png)
Let's multiply (2) by -2:
![-2*(2):\\\\2x(-2)-y(-2)=5(-2)\\\\-4x+2y=-10\hspace{12}(-2*(2))](https://img.qammunity.org/2021/formulas/mathematics/college/ms4wemxih2o1e30ydac6q98o0kly8udh2q.png)
Now, add (1) and (-2*(2)):
![(1)+(-2*(2)):\\\\4x+(-4x)-6y+(2y)=2+(-10)\\\\-4y=-8](https://img.qammunity.org/2021/formulas/mathematics/college/lhj3smt1uxqgcvj2eqlomqvibcejwrideg.png)
Hence, solving for y:
![y=(-8)/(-4) =2](https://img.qammunity.org/2021/formulas/mathematics/college/7vqpmm7v0ng4ukjvr2fges29xp81iibohr.png)
Replacing y into (2):
![2x-(2)=5](https://img.qammunity.org/2021/formulas/mathematics/college/d4er368fdt7px742xtg30dnsgvwlh1jw9v.png)
Solving for x:
![2x=5+2\\\\2x=7\\\\x=(7)/(2) =3.5](https://img.qammunity.org/2021/formulas/mathematics/college/igljggbjt140kqfik074y7e7so8akstw5w.png)
Therefore:
![x=(7)/(2) =3.5\\\\y=2](https://img.qammunity.org/2021/formulas/mathematics/college/74ispwanusvof3tpy2ejirfexb3i5eu3hd.png)