**Kind note:
Since there are two variables in one equation, it is impossible to determine a specific value for x and y. (Unless the trial-and-error method is used).
How to determine the value of x using the equation (16x - 8y = 72)?
To determine the value of "x", we need to isolate the x-variable on one side. The value (or expression) obtained on the opposite side of the x-variable will be the value of x.
How to determine the value of y using the equation (16x - 8y = 72)?
To determine the value of "y", we need to isolate the y-variable on one side. The value (or expression) obtained on the opposite side of the y-variable will be the value of y.
Determining the x-variable:
⇒ 16x - 8y = 72
⇒ 16x = 72 + 8y [Adding 8y to both sides of the equation]
⇒ 16x/16 = (72 + 8y)/16 [Dividing 16 to both sides of the equation]
⇒ x = 9/2 + y/2 [Simplifying both sides of the equation]
⇒ x = (9 + y)/2 [Combining the denominators]
Determining the y-variable:
⇒ 16x - 8y = 72
⇒ 16x - 8y - 16x = 72 - 16x [Subtracting 16x both sides of the equation]
⇒ -8y = 72 - 16x [Simplifying both sides of the equation]
⇒ -8y/-8 = (72 - 16x)/-8 [Dividing -8 to both sides of the equation]
⇒ -8y/-8 = 72/-8 - 16x/-8
⇒ -8y/-8 = -72/8 + 16x/8
⇒ y = -9 + 2x [Simplifying both sides of the equation]