Answer:
8%: $1554
21%: $2446
Explanation:
This is a simple interest problem.
The simple interest formula is given by:
![E = P*I*t](https://img.qammunity.org/2021/formulas/mathematics/college/rktontr3pu4u452xvr5dkqnhxmdwfw2bxf.png)
In which E are the earnings, P is the principal(the initial amount of money), I is the interest rate(yearly, as a decimal) and t is the time.
After t years, the total amount of money is:
.
In this question:
Two earnings, that i am going to call A(8% per year) and B(21% per year).
Two principals, for A i am going to call P and for B it is the rest, so 4000 - P.
A:
One year, so
![t = 1](https://img.qammunity.org/2021/formulas/physics/college/51j8769ejraswvuq14kbjnl0n21bngfx21.png)
8% interest, so
![r = 0.08](https://img.qammunity.org/2021/formulas/mathematics/college/uhnw431p739neottj7od6fkw1kug2vi493.png)
Earnings A.
![A = P*I*t](https://img.qammunity.org/2021/formulas/mathematics/college/k23ow5e2eubh4cs301ezxn4zli0a37x4wl.png)
![A = 0.08P](https://img.qammunity.org/2021/formulas/mathematics/college/tuipc24xx036eiaj3vxjsq2mdbc1nwd6oi.png)
B:
21% interest, so
![r = 0.21](https://img.qammunity.org/2021/formulas/mathematics/college/bnb6aai1aw2soj8l424o2x77pekanr24eb.png)
Principal (4000 - P).
![B = P*I*t](https://img.qammunity.org/2021/formulas/mathematics/college/il881mgyxs9z0ukx2uugcuotfo9up8ib0m.png)
![B = 0.21*(4000 - P)](https://img.qammunity.org/2021/formulas/mathematics/college/k19rfdt1pcuq75o94909xde5jcpw1dtkgv.png)
You'd like to earn exactly $638 in interest each year.
This means that
![A + B = 638](https://img.qammunity.org/2021/formulas/mathematics/college/ny6yvgpivpdq3zr7419z07uobgxjjub2nk.png)
Then
![B = 638 - A](https://img.qammunity.org/2021/formulas/mathematics/college/r7wsovhg958b09roj9a1dn5kyypyzm8sk7.png)
Now we have to solve the following system:
![A = 0.08P](https://img.qammunity.org/2021/formulas/mathematics/college/tuipc24xx036eiaj3vxjsq2mdbc1nwd6oi.png)
![638 - A = 0.21*(4000 - P)](https://img.qammunity.org/2021/formulas/mathematics/college/3rmzkm0xf26wmfcja6rp5es36a7tcuvzzb.png)
So, on the second equation:
![A = 638 - 0.21*(4000 - P)](https://img.qammunity.org/2021/formulas/mathematics/college/svgedzteklz3hhil3ostgfagj5jdhmr1xt.png)
Replacing on the first:
![A = 0.08P](https://img.qammunity.org/2021/formulas/mathematics/college/tuipc24xx036eiaj3vxjsq2mdbc1nwd6oi.png)
![638 - 0.21*(4000 - P) = 0.08P](https://img.qammunity.org/2021/formulas/mathematics/college/da5krdv0l2a8rbg2vtt6ltqqw1qscrlcls.png)
![638 - 840 + 0.21P = 0.08P](https://img.qammunity.org/2021/formulas/mathematics/college/5qtkurqcz16vtghp7gunsovihhgimphht2.png)
![0.21P - 0.08P = 840 - 638](https://img.qammunity.org/2021/formulas/mathematics/college/mgblar8z3su603atjiqdcp0j5t5ua8m2a5.png)
![0.13P = 202](https://img.qammunity.org/2021/formulas/mathematics/college/dzl49m6bbyn33zv71lqflewdzy7wj8kl0t.png)
![P = (202)/(0.13)](https://img.qammunity.org/2021/formulas/mathematics/college/ko0ud3pv5uypsa4vx2wyo8nediu23n0qmh.png)
![P = 1553.8](https://img.qammunity.org/2021/formulas/mathematics/college/fzyz166pnm1bodcjgjhobr550v6vw1o1pv.png)
Rounding up to the nearest integer
P = 1554.
So on A, the 8% interest, you invest $1554.
On B, the 21% interest, you invest 4000 - 1554 = $2446.