Answer:
99% confidence interval for the proportion of all customers in Tacoma, Washington, who prefer boot-cut jeans is [0.225 , 0.405].
Explanation:
We are given that a marketing researcher examined sales receipts for a random sample of 178 customers who purchased jeans from the firm’s Tacoma store. 56 of the customers in the sample purchased boot-cut jeans.
Firstly, the Pivotal quantity for 99% confidence interval for the population proportion is given by;
P.Q. =
~ N(0,1)
where,
= sample proportion of customers who purchased boot-cut jeans =
= 0.315
n = sample of customers = 178
p = population proportion of customers who prefer boot-cut jeans
Here for constructing 99% confidence interval we have used One-sample z test for proportions.
So, 99% confidence interval for the population proportion, p is ;
P(-2.58 < N(0,1) < 2.58) = 0.99 {As the critical value of z at 0.5% level
of significance are -2.58 & 2.58}
P(-2.58 <
< 2.58) = 0.99
P(
<
<
) = 0.99
P(
< p <
) = 0.99
99% confidence interval for p = [
,
]
= [
,
]
= [0.225 , 0.405]
Therefore, 99% confidence interval for the proportion of all customers in Tacoma, Washington, who prefer boot-cut jeans is [0.225 , 0.405].
The interpretation of the above confidence interval is that we are 99% confident that the proportion of all customers in Tacoma, Washington, who prefer boot-cut jeans will lie between 0.225 and 0.405.