36.6k views
5 votes
Halla la tasa de variación de cada funcion en el intervalo [-4,3] e indica si es positiva , negativa o nula A) f(x)=x2-2x+4 B) f(x)= -3x + 2 En rl ejercico A es x elevado al 2 o cuadrado

User Maykonn
by
3.9k points

1 Answer

4 votes

Answer:


A) \hspace{3}Rate\hspace{3}of\hspace{3}change=-5\hspace{3}Negative\\\\B)\hspace{3}Rate\hspace{3}of\hspace{3}change=-21\hspace{3}Negative

Explanation:

Given a function
f(x), we called the rate of change to the number that represents the increase or decrease that the function experiences when increasing the independent variable from one value "
x_1" to another "
x_2".

The rate of change of
f(x) between
x_1 and
x_2 can be calculated as follows:


Rate\hspace{3}of\hspace{3}change=f(x_2)-f(x_1)

For:


f(x)=x^2-2x+4

Let's find
f(x_1) and
f(x_2), where:


[x_1,x_2]=[-4,3]


f(x_1)=f(-4)=(-4)^2-2(4)+4=16-8+4=12\\f(x_2)=f(3)=(3)^2-2(3)+4=9-6+4=7

So:


Rate\hspace{3}of\hspace{3}change =7-12=-5\hspace{3}Negative

And for:


f(x)-3x+2

Let's find
f(x_1) and
f(x_2), where:


[x_1,x_2]=[-4,3]


f(x_1)=f(-4)=-3(-4)+2=12+2=14\\f(x_2)=f(3)=-3(3)+2=-9+2=-7

So:


Rate\hspace{3}of\hspace{3}change =-7-14=-21\hspace{3}Negative

Translation:

Dada una función
f(x), llamábamos tasa de variación al número que representa el aumento o disminución que experimenta la función al aumentar la variable independiente de un valor "
x_1" a otro "
x_2".

La tasa de variación de
f(x) entre
x_1 y
x_2, puede ser calculada de la siguiente forma:


Tasa\hspace{3}de\hspace{3}variacion=f(x_2)-f(x_1)

Para:


f(x)=x^2-2x+4

Encontremos
f(x_1) y
f(x_2), donde:


[x_1,x_2]=[-4,3]


f(x_1)=f(-4)=-3(-4)+2=12+2=14\\f(x_2)=f(3)=-3(3)+2=-9+2=-7

Entonces:


Tasa\hspace{3}de\hspace{3}variacion =7-12=-5\hspace{3}Negativa

Y para:


f(x)-3x+2

Encontremos
f(x_1) y
f(x_2), donde:


[x_1,x_2]=[-4,3]


f(x_1)=f(-4)=-3(-4)+2=12+2=14\\f(x_2)=f(3)=-3(3)+2=-9+2=-7

Entonces:


Tasa\hspace{3}de\hspace{3}variacion=-7-14=-21\hspace{3}Negativa

User Isinlor
by
3.6k points