Check the picture below, so hmm we know that much, and we can also more or less see that PR is the longest side, let's check the length of the other two sides
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ P(\stackrel{x_1}{6}~,~\stackrel{y_1}{1})\qquad Q(\stackrel{x_2}{3}~,~\stackrel{y_2}{5})\qquad \qquad d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ PQ=√([3 - 6]^2 + [5 - 1]^2)\implies PQ=√((-3)^2+4^2)\implies \boxed{PQ=5} \\\\[-0.35em] ~\dotfill\\\\ Q(\stackrel{x_1}{3}~,~\stackrel{y_1}{5})\qquad R(\stackrel{x_2}{11}~,~\stackrel{y_2}{11})~\hfill QR=√([11 - 3]^2 + [11 - 5]^2) \\\\\\ QR=√(8^2+6^2)\implies \boxed{QR=10}](https://img.qammunity.org/2023/formulas/mathematics/high-school/m06w0dvujst4tmoxmvqk6bj334cz8akeeb.png)
if that's true, the triangle is indeed a right-triangle, then hmmmm most likely using the pythagorean theorem PR² = PQ² + QR², let's check
