222k views
0 votes
Find the distance between A(3, 2) and B(8,2) a. 2 units b. √5 units c. 3 units d. 5 units​

User Rise
by
7.1k points

1 Answer

6 votes

Answer:


  • \boxed{\sf{5 \quad units}}

Explanation:

Use the slope formula.


\Longrightarrow: \sf{(y_2-y_1)/(x_2-x_1) }

Use the distance formula.


: \Longrightarrow \sf{√(\left(X_2-X_1\right)^2+\left(Y_2-Y_1\right)^2)}


\sf{x_2=8}\\\\\\\sf{x_1=3}\\\\\\\sf{y_2=2}\\\\\\\sf{y_1=2}

Rewrite the problem down.


\sf{√(\left(8-3\right)^2+\left(2-2\right)^2)}

Solve.

Use the order of operations.

PEMDAS stands for:

  • Parentheses
  • Exponents
  • Multiply
  • Divide
  • Add
  • Subtract

⇒ (8-3)²+(2-2)²

Solve parentheses, first.

⇒ (8-3)²

⇒ 8-3=5

⇒ 5²+(2-2)²

⇒ (2-2)=0

⇒ 0²

Rewrite the problem down.

⇒ 5²+0²

Do exponents next.

⇒ 5²=5*5=25

⇒ 0²=0*0=0

⇒ 25+0

Add.

⇒ 25+0=25

You can also divide the numbers from left to right.

→ 25/5=5

  • Therefore, the distance between (3, 2) and (8,2) is "5 units", which is our answer.

I hope this helps. Let me know if you have any questions.

User Usego
by
8.2k points