Answer:
p₀ = (- 20,000 i - 17,000 j) kg m / s
vₓ = -10.81 m / s , v_{y} = - 9,189 m / s
Step-by-step explanation:
This exercise can be solved with the conservation of the moment.
The system is formed by the two cars, so the forces during the crash are internal and the moment is conserved
initial moment. Just before the crash
p₀ = M v₁ + m v₂
where the masses M = 1000 kg with a velocity of v₁ = - 20 i m / s for traveling west, the second vehicle has a mass m = 850 kg and a velocity of v₂ = - 20 i m / s, we substitute
p₀ = - 1000 20 i - 850 20 j
p₀ = (- 20,000 i - 17,000 j) kg m / s
final moment. Right after the crash
how the cars fit together
= (M + m)
the final speed is shaped
v_{f} = vₓ i + v_{y} j
we substitute
p_{f} = (M + m) (vₓ i + v_{y} j)
p_{f} = (1000 + 850) (vₓ i +
j)
p₀ = p_{f}
(- 20000 i - 17000 j) = 1850 (vₓ i + v_{y} j)
we solve for each component
vₓ = -20000/1850
vₓ = -10.81 m / s
v_{y} = -17000/1850
v_{y} = - 9,189 m / s