Answer:
AB = 8.857 cm
Explanation:
Here, we are given a right angle
in which we have the following things:
![\angle A = 90 ^\circ\\\angle C = 41 ^\circ\\\text{Side }BC = 13.5 cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/3gxmzgrcmbuxfej7q1t36wcyls88m0ck19.png)
Side BC is the hypotenuse here.
We have to find the side AB.
Trigonometric functions can be helpful to find the value of Side AB here.
Calculating
:
Sum of all the angles in
is
.
![\Rightarrow \angle A + \angle B + \angle C = 180^\circ\\\Rightarrow 90^\circ + \angle B + 41^\circ = 180^\circ\\\Rightarrow \angle B = 49^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/p07tnn9ixlkvsvupjkgighbuj9bhyjrufo.png)
We know that cosine of an angle is:
![cos \theta = \frac{\text{Base}}{\text{Hypotenuse}}\\\Rightarrow cos B = (AB)/(BC)\\\Rightarrow cos 49^\circ = (AB)/(13.5)\\\Rightarrow AB = 13.5 * 0.656\\\Rightarrow AB = 8.857 cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/oui94i6ajlwzbz03b5akgfi624nekjrbtt.png)
So, side AB = 8.857 cm .