9.6k views
4 votes
How do I solve the equation in an interval from 0 to 2π ? 9 cos 2t = 6​

User Vrtx
by
5.7k points

1 Answer

0 votes


9\cos(2t)=6\implies\cos(2t)=\frac23

Using the fact that cos is 2π-periodic, we have


\cos(2t)=\frac23\implies2t=\cos^(-1)\left(\frac23\right)+2n\pi

That is,
\cos(\theta+2n\pi)=\cos\theta for any
\theta and integer
n.


\implies t=\frac12\cos^(-1)\left(\frac23\right)+n\pi

We get 2 solutions in the interval [0, 2π] for
n=0 and
n=1,


t=\frac12\cos^(-1)\left(\frac23\right)\text{ and }t=\frac12\cos^(-1)\left(\frac23\right)+\pi

User Zephinzer
by
4.8k points