Answer:
![y=4(1.5)^x](https://img.qammunity.org/2023/formulas/mathematics/college/mbkhmlllczri99ucm6c1gkfoepqw7fbde8.png)
Explanation:
General form of an exponential function:
![y=ab^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/hye5rg1h8wj3ohgdt4j1vpepdhoym0w9ex.png)
where:
- a is the y-intercept (or initial value)
- b is the base (or growth factor)
- x is the independent variable
- y is the dependent variable
If b > 1 then it is an increasing function
If 0 < b < 1 then it is a decreasing function
Given ordered pairs:
(3, 13.5) and (5, 30.375)
As the y-values are increasing, the function is increasing, so b > 1
Input the given ordered pairs into the general form of the equation:
![\implies ab^3=13.5](https://img.qammunity.org/2023/formulas/mathematics/college/7k6kzw9jb6x9qr0cfr6i9n11voiadrv24w.png)
![\implies ab^5=30.375](https://img.qammunity.org/2023/formulas/mathematics/college/3kwpdjtdyvv8kzuj0ffq9ctkltz8rnp7l7.png)
To find b, divide the second equation by the first:
![\implies (ab^5)/(ab^3)=(30.375)/(13.5)](https://img.qammunity.org/2023/formulas/mathematics/college/iv8e4yv5f9jcb7ewfufugixg1d7t2p2w2p.png)
![\implies b^2=2.25](https://img.qammunity.org/2023/formulas/mathematics/college/e2rvyukn0aggub338ojs8m6bns7yz1d5q8.png)
![\implies b=\pm √(2.25)](https://img.qammunity.org/2023/formulas/mathematics/college/kjffsyv81aikhorbrxiv8gi4rwwfachbun.png)
![\implies b= \pm 1.5](https://img.qammunity.org/2023/formulas/mathematics/college/15nrotiy7r8ielohuodaqg79j56jte16hs.png)
As the function is increasing, b > 1:
⇒ b = 1.5 only
Substitute the found value of b into one of the equations and solve for a:
![\implies a(1.5)^3=13.5](https://img.qammunity.org/2023/formulas/mathematics/college/3g5dnu4g5p2nt7kr3n3v98km80wddwphb8.png)
![\implies 3.375a=13.5](https://img.qammunity.org/2023/formulas/mathematics/college/8hl2uow9k2jc4uw9gj19tfck73v886xkeh.png)
![\implies a=(13.5)/(3.375)](https://img.qammunity.org/2023/formulas/mathematics/college/nr1saukcxrikzu9dnp7aidyg0w5m2adae5.png)
![\implies a=4](https://img.qammunity.org/2023/formulas/mathematics/college/8hv3ldsvhivo2tm1mejcfnwd4n5e6hmaay.png)
Therefore, the final exponential equation is:
![y=4(1.5)^x](https://img.qammunity.org/2023/formulas/mathematics/college/mbkhmlllczri99ucm6c1gkfoepqw7fbde8.png)