We have been given that in ΔRST, s = 93 inches, ∠S=123° and ∠T=28°. We are asked to find the length of r to the nearest 10th of an inch.
We will use law of sines to solve for side r.
, where a, b and c are corresponding sides to angles A, B and C respectively.
Let us find measure of angle S using angle sum property of triangles.
![\angle R+\angle S+\angle T=180^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/meh1apjm24fj4pwvytgl0qr4mh4xts558t.png)
![\angle R+123^(\circ)+28^(\circ)=180^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/i0ecr3xs2pvm7f44cfdzabf7xi8xl47hf9.png)
![\angle R+151^(\circ)=180^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/x4s9gvbpfrakpocl1ouu1p9jp36movcfj4.png)
![\angle R+151^(\circ)-151^(\circ)=180^(\circ)-151^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/n0sxhgtialrinwjqfl4s43x4mi5w1ivlta.png)
![\angle R=29^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sbulnt7bjx3dd5eb9yntyfn17rucnu4c7a.png)
![\frac{r}{\text{sin}(R)}=\frac{s}{\text{sin}(S)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/wh35txmj491zkvqn80f5uts1vyi9pgcwd7.png)
![\frac{r}{\text{sin}(29^(\circ))}=\frac{93}{\text{sin}(123^(\circ))}](https://img.qammunity.org/2021/formulas/mathematics/high-school/oiy5t0uuuf3yo29kjtn55gsn99alj1xfpo.png)
![\frac{r}{\text{sin}(29^(\circ))}\cdot \text{sin}(29^(\circ))=\frac{93}{\text{sin}(123^(\circ))}\cdot \text{sin}(29^(\circ))](https://img.qammunity.org/2021/formulas/mathematics/high-school/937e2veqiav8cjxoeincvwibvoobkpruac.png)
![r=(93)/(0.838670567945)\cdot (0.484809620246)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3k3667uhxz0sqhc3466c55tkie063tg15n.png)
![r=110.889786233799179\cdot (0.484809620246)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ynk7d685vlpllchq6wscw3jmanby5j8xfn.png)
![r=53.7604351](https://img.qammunity.org/2021/formulas/mathematics/high-school/78vvu47u2y8a206mbpd125yspafwezqkls.png)
Upon rounding to nearest tenth, we will get:
![r\approx 53.8](https://img.qammunity.org/2021/formulas/mathematics/high-school/g4qacag23ca02sh3q31yqszaki8ru20lnc.png)
Therefore, the length of r is approximately 53.8 inches.