Answer:
![17.68cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/k3gxb00vkblr87kkovdoneyaeo5h3zqtzg.png)
Explanation:
Using the area formula of a cone, find the height first.
![A=\pi r(r+√(h^2+r^2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/bwlkycoy53onksutv01jsig8t56eke8jqy.png)
Solve for h,
Begin by dividing by
![\pi r](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f3qeaajvxealt0x27znodbumrrkkpf57hk.png)
![(A)/(\pi r)=r+√(h^2+r^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dt5iswm1jw7pamvov1b7pub2u5ab0nryzy.png)
Subtract r.
![(A)/(\pi r)-r=√(h^2+r^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u1ntmf24jdgbmo1hv7e54ja796wiv3yeb5.png)
Square both sides.
![((A)/(\pi r)-r)^2=(√(h^2+r^2))^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/gisrv26wbmnia7ix11vn2c6y3xgk2nfbrh.png)
![((A)/(\pi r)-r)^2=h^2+r^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/x9wjk1ylgfiobwyfk1kbk9e4vtgt1fbknc.png)
Subtract
![r^2](https://img.qammunity.org/2021/formulas/mathematics/college/ixb663a0a620d55g3n7joytyn1sm1ce9tv.png)
![((A)/(\pi r)-r)^2-r^2=h^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/1rfqx564eas6v3chvo4gziv35ao1zh348k.png)
Extract the square root.
![\sqrt{((A)/(\pi r)-r)^2-r^2 } =√(h^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/540zmzbsuxk1sbrjl710x8q2fouhyvdgeh.png)
![\sqrt{((A)/(\pi r)-r)^2-r^2 } =h](https://img.qammunity.org/2021/formulas/mathematics/high-school/o25nqni7fte058lof0fewt93q58l2v22e4.png)
Plug in your values.
![\sqrt{[(670cm^2)/((3.14)(8cm))-(8cm)]^2-(8cm)^2 } =h](https://img.qammunity.org/2021/formulas/mathematics/high-school/wh9jjgl3s0ewj90e0kvr0mewpk7aosonuj.png)
Solve;
![\sqrt{[(670cm^2)/(25.12cm)-(8cm)]^2-(8cm)^2 } =h](https://img.qammunity.org/2021/formulas/mathematics/high-school/9kynvonghsq1nboatfv68ic824pj2w0d7b.png)
![√([26.67cm-(8cm)]^2-(8cm)^2 ) =h](https://img.qammunity.org/2021/formulas/mathematics/high-school/xypnl2l282w9lprxps5u3xcobx2p286u6y.png)
![√((18.67cm)^2-(8cm)^2 ) =h](https://img.qammunity.org/2021/formulas/mathematics/high-school/5ab8eoo3d9cilqpzu2rb7bdefoiqdlagy2.png)
![√(348.57cm^2-64cm^2)=h](https://img.qammunity.org/2021/formulas/mathematics/high-school/icwrrrpyt18u2jlefy10kb56matjfphjwu.png)
![√(284.57cm^2)=h](https://img.qammunity.org/2021/formulas/mathematics/high-school/karkjte29m6jdgzkqres55ptd2y8op7778.png)
![15.77cm=h](https://img.qammunity.org/2021/formulas/mathematics/high-school/ptsy24byreqwgxkz2qm0rsvyft9l4xxekl.png)
------------------------------------------------------------------
Now, to find the slant height use this formula:
![l=√(h^2+r^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/d666y8tyuosv71h1w2701lpqfhfqgpuvhx.png)
![l=√((15.77cm)^2+(8cm)^2)\\l=√(248.69cm^2+64cm^2)\\ l=√(312.69cm^2)\\ l=17.68cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/mth3m9lx2cmyh6ejxuapxf5twapyyfch2a.png)