146k views
3 votes
Find the principal value of the following expressions. Write your answer in the form a + ib.

(a)
(-1)^(√(2) )

(b)
sin^(2) i

(c)
cosh(√(2)+3i )

User Dradd
by
4.6k points

1 Answer

4 votes

Answer:

(a) -0.266255 -0.963903i

(b) -1.381098

(c) -2.156385 +0.273077i

Explanation:

A suitable calculator is very handy for such questions. See attached.

__

Euler's relation and the definitions of sin and cosh in exponential terms are helpful.

(a)


(-1)^(√(2))=e^(i\pi√(2))=\cos{(√(2)\cdot180^(\circ))}+i\sin{(√(2)\cdot180^(\circ))}\\\\\approx\cos{254.558^(\circ)}+i\sin{254.558^(\circ)}\\\\\approx\boxed{-0.26625534-0.96390253i}

__

(b)


\sin^2{i}=(-i\sinh{(-1)})^2=-\sinh^2{(-1)}\approx\boxed{-1.38109785}

__

(c)


\cosh{(√(2)+3i)}=(e^(√(2)+3i)+e^(-(√(2)+3i)))/(2)\\\\=(e^(√(2))(cos(3)+isin(3))+e^(-√(2))(cos((-3))+isin((-3))))/(2)\\\\=cos((3))\cosh{√(2)}+isin((3))\sinh{√(2)}\\\\=\boxed{-2.15638538+0.27307665i}

_____

The useful relations are ...


e^(i\theta)=cos(\theta)+isin(\theta)\\\\\sin(\theta)=(e^(i\theta)-e^(-i\theta))/(2i)=-i\sinh{(i\theta)}\\\\\cosh{(\theta)}=(e^(\theta)+e^(-\theta))/(2),\ \sinh{(\theta)}=(e^(\theta)-e^(-\theta))/(2)

Find the principal value of the following expressions. Write your answer in the form-example-1
User ArtOfWarfare
by
4.2k points