195k views
13 votes
X' + 2y' + x = 0 , x' - y' + y = 0 x(0) = 0 and y(0) = 1

1 Answer

7 votes

This looks like a system of differential equations.


\begin{cases}x' + 2y' + x = 0 \\ x' - y' + y = 0 \\x(0)=0, y(0)=1\end{cases}

Eliminating x' gives


(x'+2y'+x)-(x'-y'+y) = 0 - 0 \implies 3y' - y + x = 0

and eliminating y' gives


(x'+2y'+x) + 2(x'-y'+y)=0+2*0 \implies 3x' + x + 2y = 0

so that we can rewrite the system as


\begin{cases}3x' = -x - 2y \\ 3y' = -x + y\end{cases}

or equivalently in matrix form as


\begin{bmatrix}x\\y\end{bmatrix}' = \frac13 \begin{bmatrix}-1&-2\\-1&1\end{bmatrix} \begin{bmatrix}x\\y\end{bmatrix}

Compute the eigenvalues for the coefficient matrix:


\det\begin{bmatrix}-1-\lambda&-2\\-1&1-\lambda\end{bmatrix} = (-1-\lambda)(1-\lambda) - 2 = \lambda^2 -3 = 0 \implies \lambda=\pm\sqrt3

Compute the corresponding eigenvectors:


\lambda=\sqrt3 \implies \begin{bmatrix}-1-\sqrt3&-2\\-1&1-\sqrt3\end{bmatrix}\begin{bmatrix}v_1\\v_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix} \\\\ \implies v_1=(1-\sqrt3)v_2 \implies \vec v = \begin{bmatrix}1-\sqrt3\\1\end{bmatrix}


\lambda=-\sqrt3 \implies \begin{bmatrix}-1+\sqrt3&-2\\-1&1+\sqrt3\end{bmatrix}\begin{bmatrix}v_1\\v_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix} \\\\ \implies v_1 = (1+\sqrt3)v_2 \implies \vec v = \begin{bmatrix}1+\sqrt3\\1\end{bmatrix}

We end up multiplying the matrix by 1/3, so the eigenvalues also get scaled by 1/3 and λ = ±1/√3. The eigenvectors stay the same.

Then the characteristic solution to the system is


\begin{bmatrix}x\\y\end{bmatrix} = C_1 e^(t/\sqrt3) \begin{bmatrix}\frac{1-\sqrt3}3\\\frac13\end{bmatrix} + C_2 e^(-t/\sqrt3) \begin{bmatrix}\frac{1+\sqrt3}3\\\frac13\end{bmatrix}

Use the initial conditions to solve for the constants.


\begin{bmatrix}0\\1\end{bmatrix} = C_1 \begin{bmatrix}\frac{1-\sqrt3}3\\\frac13\end{bmatrix} + C_2 \begin{bmatrix}\frac{1+\sqrt3}3\\\frac13\end{bmatrix}


\implies \begin{cases}(1-\sqrt3) C_1 + (1+\sqrt3) C_2 = 0 \\ C_1 + C_2 = 3\end{cases}


\implies C_1=\frac{3+\sqrt3}2, C_2=\frac{3-\sqrt3}2

Then the particular solution is


\begin{bmatrix}x\\y\end{bmatrix} = \frac{3+\sqrt3}6 e^(t/\sqrt3) \begin{bmatrix}1-\sqrt3\\1\end{bmatrix} + \frac{3-\sqrt3}6 e^(-t/\sqrt3) \begin{bmatrix}1+\sqrt3\\1\end{bmatrix}

or


\begin{cases}x(t) = -\frac1{\sqrt3} e^(\sqrt3 \, t) + \frac1{\sqrt3} e^(-\sqrt3\,t) \\\\ y(t) = \frac{3+\sqrt3}6 e^(\sqrt3\,t) + \frac{3-\sqrt3}6 e^(-\sqrt3\,t)\end{cases}

User Gorge
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories