495 views
3 votes
Prove that (tan²y) (cos²y) + 1/sec²y = 1​

2 Answers

7 votes

Explanation:


(\tan^2y) (\cos^2y) +(1)/(\sec^2y) = 1\\</p><p>LHS </p><p>= (\tan^2y) (\cos^2y) +(1)/(\sec^2y) \\\\</p><p>(\sin^2y)/(\cos^2y)* \cos^2 y + \cos^2 y \\\\</p><p>= \sin^2y + \cos^2 y \\\\</p><p>= 1\\\\</p><p>= RHS\\\\</p><p>\purple {\boxed {\bold {\therefore (\tan^2y) (\cos^2y) +(1)/(\sec^2y) = 1}}} \\

Hence Proved

User Tushar Banne
by
8.6k points
5 votes

Answer:

see explanation

Explanation:

Using the trigonometric identities

tan x =
(sinx)/(cosx) , sec x =
(1)/(cosx) , sin²x + cos²x = 1

Consider the left side

tan²y × cos²y +
(1)/(sec^2y)

=
(sin^2y)/(cos^2y) × cos²y +
(1)/((1)/(cos^2y) ) ← cancel cos²y in the product

= sin²y + cos²y

= 1

= right side ⇒ proven

User Robin Leboeuf
by
7.8k points