53.5k views
3 votes
Find a numerical value of one trigonometric function of x for cscx = sinx tanx + cosx

User Felan
by
5.4k points

2 Answers

5 votes

Answer:

cot x=1

Explanation:

got it right

User Jade Byfield
by
4.7k points
6 votes

Answer:

Explanation:

we have


cscx = sinx tanx + cosx\\\\(1)/(sinx)=sinx.(sinx)/(cosx) +cosx\\\\(1)/(sinx).sinx.cosx= sinx.(sinx)/(cosx).sinx.cosx+cosx.sinx.cosx\\ cosx= (sinx)^(3) +sinx.(cosx)^(2) \\cosx= sinx[(sinx)^(2)+(cosx)^(2))\\ cosx=sinx.1\\cosx=sinx\\tanx=1\\x=(\pi)/(4) +k\pi,k-integer.

User Lifang
by
4.8k points