30.5k views
1 vote
Find each of the following indefinite integrals.


∫sec^2 θ √ tanθ dθ

User Lukus
by
5.3k points

1 Answer

6 votes

Answer:


\displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta = \frac{2[tan(\theta)]^\bigg{(3)/(2)}}{3} + C

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta

Step 2: Integrate Pt. 1

  1. [Integrand] Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta = \int {sec^2(\theta)[tan(\theta)]^\bigg{(1)/(2)}} \, dx

Step 3: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = tan(\theta)
  2. [u] Differentiate [Trigonometric Differentiation]:
    \displaystyle du = sec^2(\theta) \ d\theta

Step 4: Integrate Pt. 3

  1. [Integral] U-Substitution:
    \displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta = \int {u^\bigg{(1)/(2)}} \, du
  2. [Integral] Reverse Power Rule:
    \displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta = \frac{2u^\bigg{(3)/(2)}}{3} + C
  3. Back-Substitute:
    \displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta = \frac{2[tan(\theta)]^\bigg{(3)/(2)}}{3} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Malte Ubl
by
5.2k points