Answer:
![\displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta = \frac{2[tan(\theta)]^\bigg{(3)/(2)}}{3} + C](https://img.qammunity.org/2021/formulas/mathematics/high-school/72qhztayaqc6kg9w4j42zp1wdvcdgb9sxc.png)
General Formulas and Concepts:
Algebra I
- Exponential Rule [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{(1)/(n)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ovswe6woyxmv3hfdn80atr35ajxkh4i9t1.png)
Calculus
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C](https://img.qammunity.org/2021/formulas/mathematics/college/finpzh9immxz5i8n5r71nxs30z9vx92wau.png)
U-Substitution
Explanation:
Step 1: Define
Identify
![\displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/5c7qravu33vthv1mwzuj4fr5dup9aaephp.png)
Step 2: Integrate Pt. 1
- [Integrand] Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta = \int {sec^2(\theta)[tan(\theta)]^\bigg{(1)/(2)}} \, dx](https://img.qammunity.org/2021/formulas/mathematics/high-school/cwzx9ykj0lb1cexqrps2epufhzielziema.png)
Step 3: Integrate Pt. 2
Identify variables for u-substitution.
- Set u:
![\displaystyle u = tan(\theta)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9jlu20lh3ff2muendls0nygii6yhulzkbe.png)
- [u] Differentiate [Trigonometric Differentiation]:
![\displaystyle du = sec^2(\theta) \ d\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/40o81whjkungyyev7xp8p4p4jhmy0v20m7.png)
Step 4: Integrate Pt. 3
- [Integral] U-Substitution:
![\displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta = \int {u^\bigg{(1)/(2)}} \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/od1azk7r7agrpyg31zps5ml5ks9qq4kscw.png)
- [Integral] Reverse Power Rule:
![\displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta = \frac{2u^\bigg{(3)/(2)}}{3} + C](https://img.qammunity.org/2021/formulas/mathematics/high-school/h1tjtfvoulea66l7arnwh4vvi7u03gwxqe.png)
- Back-Substitute:
![\displaystyle \int {sec^2(\theta)√(tan(\theta))} \, d\theta = \frac{2[tan(\theta)]^\bigg{(3)/(2)}}{3} + C](https://img.qammunity.org/2021/formulas/mathematics/high-school/72qhztayaqc6kg9w4j42zp1wdvcdgb9sxc.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e