Answer:
a)95% confidence intervals for the population mean of light bulbs in this batch
(325.5 ,374.5)
b)
The calculated value Z = 4 > 1.96 at 0.05 level of significance
Null hypothesis is rejected
The manufacturer has not right to take the average life of the light bulbs is 400 hours.
Explanation:
Given sample size n = 64
Given mean of the sample x⁻ = 350
Standard deviation of the Population σ = 100 hours
The tabulated value Z₀.₉₅ = 1.96
95% confidence intervals for the population mean of light bulbs in this batch



(325.5 ,374.5)
b)
Explanation:-
Given mean of the Population μ = 400
Given sample size n = 64
Given mean of the sample x⁻ = 350
Standard deviation of the Population σ = 100 hours
Null hypothesis : H₀:The manufacturer has right to take the average life of the light bulbs is 400 hours.
μ = 400
Alternative Hypothesis: H₁: μ ≠400
The test statistic


|Z| = |-4|
The tabulated value Z₀.₉₅ = 1.96
The calculated value Z = 4 > 1.96 at 0.05 level of significance
Null hypothesis is rejected.
Conclusion:-
The manufacturer has not right to take the average life of the light bulbs is 400 hours.