Answer:
a)
[H₂O] = 0.0455M
[Cl₂O] = 0.0130M
[HOCl] = 0.0200M
b) Kc = 0.676
c) [H₂O] = [Cl₂O] = 0.177M
Step-by-step explanation:
Based on the reaction:
H₂O(g) + Cl₂O(g) ⇄ 2HOCl(g)
Kc is defined as:
Kc = [HOCl]² / [H₂O][Cl₂O] For molar concentrations in equilibrium
As volume of the flask is 1.00L, the initial molar concentrations of H₂O and Cl₂O is 0.0555M and 0.0230M, respectively.
In equilibrium, the concentrations are:
[H₂O] = 0.0555M - X
[Cl₂O] = 0.0230M - X
[HOCl] = 2x = 0.0200M → X = 0.0100M
Where X is reaction coordinate
a) Concentrations in equilibrium are:
[H₂O] = 0.0455M
[Cl₂O] = 0.0130M
[HOCl] = 0.0200M
b) Replacing in Kc:
Kc = [0.0200]² / [0.0455][0.0130] = 0.676
c) Initial concentration of HOCl is 1.0mol / 2.0L = 0.50M. In equilibrium concentrations are:
[H₂O] = X
[Cl₂O] = X
[HOCl] = 0.50M - 2X
Replacing in Kc formula:
0.676 = [0.50-2X]² / [X][X]
0.676X² = 4X² - 2X + 0.25
0 = 3.324X² - 2X + 0.25
Solving for X:
X = 0.177M
X = 0.425M → False answer, produce negative concentrations.
As X = [H₂O] = [Cl₂O]; equilibrium concentrations of both compounds is 0.177M