Answer:

Explanation:
Let P(A) be the probability that goggle of type A is manufactured
P(B) be the probability that goggle of type B is manufactured
P(E) be the probability that a goggle is returned within 10 days of its purchase.
According to the question,
P(A) = 30%
P(B) = 70%
P(E/A) is the probability that a goggle is returned within 10 days of its purchase given that it was of type A.
P(E/B) is the probability that a goggle is returned within 10 days of its purchase given that it was of type B.
will be the probability that a goggle is of type A and is returned within 10 days of its purchase.
will be the probability that a goggle is of type B and is returned within 10 days of its purchase.





If a goggle is returned within 10 days of its purchase, probability that it was of type B:


So, the required probability is
