Answer:
center =
![(-4,8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4est7dyuy143elxd28av92t1uy3y2zqvu7.png)
Radius = 7 units
Explanation:
Given: Equation of circle is
![x^2+y^2+8x-16y+31=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/2umlmq9qzdox1vyskpj6czfksau52nr91o.png)
To find: Radius and center of the circle
Solution:
Equation of circle is
![(x-a)^2+(y-b)^2=r^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/ycacfxnx2plnn5fwvvlol31pbly7tal4xx.png)
Here,
is the center and r is the radius.
![x^2+y^2+8x-16y+31=0\\\left [ x^2+2(4)x+4^2 \right ]+\left [ y^2-2(8)y+8^2 \right ]+31=4^2+8^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/2qbuizto99f0uikppm7oj58j74e26c7fl2.png)
Use formula
![(u+v)^2=u^2+v^2+2uv](https://img.qammunity.org/2021/formulas/mathematics/high-school/t50bqb3nvny9cnpd19prhuo2p615asc61x.png)
![(x+4)^2+(y-8)^2=16+64-31\\(x+4)^2+(y-8)^2=49=7^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/94h48djlpq220o64f2bj6d8599tqht9zw6.png)
On comparing this equation with equation of circle,
center =
![(-4,8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4est7dyuy143elxd28av92t1uy3y2zqvu7.png)
Radius = 7 units