Answer:
0.25916 lb-s/ft^2
Step-by-step explanation:
Given:-
- The specific gravity of oil, SGo = 0.8
- The specific gravity of sphere, SGo = 8
- Terminal velocity of sphere, v = 2.5 fpm
- The diameter of sphere, D = 0.25 in
Find:-
What is the viscosity of the oil?
Solution:-
- Consider a sphere completely submerged into oil and travelling with terminal velocity ( v ).
- Develop a free body diagram for the sphere. There are forces acting on the sphere.
- The downward acting force is due to the weight of the sphere ( W ):
Where,
The mass ( m_s ) of the sphere is given as:
Where,
ρ_w : Density of water = 1.940 slugs/ft3
V_s: The volume of object ( sphere )
- The volume of sphere is expressed as a function of radius:
Hence,
- One of the upward acting force is the buoyant force ( Fb ) that is proportional to the volume of fluid displaced by the immersed object.
- The buoyant force ( Fb ) is given by:
- Therefore the buoyant force ( Fb ) becomes:
- The other upward acting force is the frictional drag ( F_d ) i.e the resistive frictional force acting on the contact points of the sphere and the fluid oil.
- From stokes formulations the drag force acting on a spherical object which is completely immersed in a fluid is given as:
Where,
μ: The viscosity of fluid
v : The velocity of object
Therefore,
- Apply Newton's second law of motion for the sphere travelling in the fluid:
Where,
a: Acceleration of object = 0 ( Terminal velocity condition )
- Plug in the three forces acting on the metal sphere: