192k views
3 votes
Suppose that output (Y ) in an economy is given by the following aggregate production function: Yt = Kt + Nt where Kt is capital and Nt is the population. Furthermore, assume that capital depreciates at rate δ and that savings is a constant proportion s of income. You may assume that δ > s. 1. Suppose that the population remains constant. Solve for the steady-state level of capital per worker. 2. Now suppose that the population grows at rate n. Solve for the steady-state level of capital per worker. 3. Based on your answer to part 2) above, solve for the steady-state growth rates (in terms of n) of the following: (a) capital per worker (b) output per worker (c) capital (d) output

User Cytofu
by
7.2k points

1 Answer

4 votes

Answer:

Check the explanation

Step-by-step explanation:

Yt = Kt + Nt

Taking output per worker, we divide by Nt

Yt/Nt = Kt/Nt + 1

yt = kt + 1

where yt is output per worker and kt is capital per worker.

a) With population being constant, savings rate s and depreciation rate δ.

ΔKt = It - δKt

dividing by Nt, we get

ΔKt/Nt = It/Nt - δKt/Nt ..... [1]

for kt = Kt/Nt, taking derivative

d(kt)/dt = d(Kt/Nt)/dt ... since Nt is a constant, we have

d(kt)/dt = d(Kt/Nt)/dt = (dKt/dt)/Nt = ΔKt/Nt = It/Nt - δKt/Nt = it - δkt

thus, Capital accumulation Δkt = i – δkt

In steady state, Δkt = 0

That is I – δkt = 0

S = I means that I = s.yt

Thus, s.yt – δkt = 0

Then kt* = s/δ(yt) = s(kt+1)/(δ )

kt*= skt/(δ) + s/(δ)

kt* - skt*/(δ) = s/(δ)

kt*(1- s/(δ) = s/(δ)

kt*((δ - s)/(δ) = s/(δ)

kt*(δ-s)) = s

kt* = s/(δ -s)

capital per worker is given by kt*

b) with population growth rate of n,

d(kt)/dt = d(Kt/Nt)/dt =

=
((dKt)/(dt)Nt - (dNt)/(dt)Kt)/(N^(2)t)

=
(dKt/dt)/(Nt) - (dNt/dt)/(Nt).(Kt)/(Nt)

= ΔKt/Nt - n.kt

because (dNt/dt)/Nt = growth rate of population = n and Kt/Nt = kt (capital per worker)

so, d(kt)/dt = ΔKt/Nt - n.kt

Δkt = ΔKt/Nt - n.kt = It/Nt - δKt/Nt - n.kt ......(from [1])

Δkt = it - δkt - n.kt

at steady state Δkt = it - δkt - n.kt = 0

s.yt - (δ + n)kt = 0........... since it = s.yt

kt* = s.yt/(δ + n) =s(kt+1)/(δ + n)

kt*= skt/(δ + n) + s/(δ + n)

kt* - skt*/(δ + n) = s/(δ + n)

kt*(1- s/(δ + n)) = s/(δ + n)

kt*((δ + n - s)/(δ + n)) = s/(δ + n)

kt*(δ + n -s)) = s

kt* = s/(δ + n -s)

.... is the steady state level of capital per worker with population growth rate of n.

3. a) capital per worker. in steady state Δkt = 0 therefore, growth rate of kt is zero

b) output per worker, yt = kt + 1

g(yt) = g(kt) = 0

since capital per worker is not growing, output per worker also does not grow.

c)capital.

kt* = s/(δ + n -s)

Kt*/Nt = s/(δ + n -s)

Kt* = sNt/(δ + n -s)

taking derivative with respect to t.

d(Kt*)/dt = s/(δ + n -s). dNt/dt

(dNt/dt)/N =n (population growth rate)

so dNt/dt = n.Nt

d(Kt*)/dt = s/(δ + n -s).n.Nt

dividing by Kt*

(d(Kt*)/dt)/Kt* = s/(δ + n -s).n.Nt/Kt* = sn/(δ + n -s). (Nt/Kt)


(sn)/(\delta +n-s).(Nt)/(Kt)

using K/N = k


(s)/(\delta +n-s).(n)/(kt)

plugging the value of kt*


(sn)/(\delta +n-s).((\delta + n -s))/(s)

n

thus, Capital K grows at rate n

d) Yt = Kt + Nt

dYt/dt = dKt/dt + dNt/dt = s/(δ + n -s).n.Nt + n.Nt

using d(Kt*)/dt = s/(δ + n -s).n.Nt from previous part and that (dNt/dt)/N =n

dYt/dt = n.Nt(s/(δ + n -s) + 1) = n.Nt(s+ δ + n -s)/(δ + n -s) = n.Nt((δ + n)/(δ + n -s)

dYt/dt = n.Nt((δ + n)/(δ + n -s)

dividing by Yt

g(Yt) = n.(δ + n)/(δ + n -s).Nt/Yt

since Yt/Nt = yt

g(Yt) = n.(δ + n)/(δ + n -s) (1/yt)

at kt* = s/(δ + n -s), yt* = kt* + 1

so yt* = s/(δ + n -s) + 1 = (s + δ + n -s)/(δ + n -s) = (δ + n)/(δ + n -s)

thus, g(Yt) = n.(δ + n)/(δ + n -s) (1/yt) = n.(δ + n)/(δ + n -s) ((δ + n -s)/(δ + n)) = n

therefore, in steady state Yt grows at rate n.

User Beefaroni
by
8.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories