Since F is apparently a vector field, I assume you mean
![\vec F = \\abla(x^3+y^3+z^3+3xyz)](https://img.qammunity.org/2023/formulas/mathematics/college/7a0yeujtuuzhpch6d21rplmdgx1s3rtm3o.png)
with ∇ = gradient, whereas ∆ is often used to denote the Laplacian, ∆ = ∂²/∂x² + ∂²/∂y² + ∂²/∂z².
Let
. Compute the gradient of f :
![\vec F = \\abla f(x,y,z) = (\partial f)/(\partial x) \, \vec\imath + (\partial f)/(\partial y) \, \vec\jmath + (\partial f)/(\partial z) \, \vec k](https://img.qammunity.org/2023/formulas/mathematics/college/zzvu7o1t32mvn0xhmopdk96nol3u9u1snr.png)
![\vec F = (3x^2+3yz) \,\vec\imath + (3y^2 + 3xz) \,\vec\jmath + (3z^2+3xy) \,\vec k](https://img.qammunity.org/2023/formulas/mathematics/college/axwvbkk41rgjm4xfjrdx888pdfmo90nmz6.png)
Now compute the divergence of F (incidentally, divergence of a gradient field is the Laplacian of the f):
![\mathrm{div} \, \vec F = (\partial(3x^2+3yz))/(\partial x) + (\partial(3y^2+3xz))/(\partial y) + (\partial(3z^2+3xy))/(\partial z)](https://img.qammunity.org/2023/formulas/mathematics/college/nyyyzifahryzam0ptjg8yi9m73t3jxei9t.png)
![\boxed{\mathrm{div} \, \vec F = 6x + 6y + 6z}](https://img.qammunity.org/2023/formulas/mathematics/college/tfw2zt3dej0qhakdwh0lnhum4scqvlppjn.png)
and the curl: (the following is overkill, since any gradient field has curl zero, but it doesn't hurt to verify that)
![\mathrm{curl}\, \vec F = \left((\partial(3z^2+3xy))/(\partial y) - (\partial(3y^2+3xz))/(\partial z)\right) \,\vec\imath - \left((\partial(3z^2+3xy))/(\partial x) - (\partial(3x^2+3yz))/(\partial z)\right) \, \vec\jmath \\ ~~~~~~~~~~~~ + \left((\partial(3y^2+3xz))/(\partial x) - (\partial(3x^2+3yz))/(\partial y)\right) \,\vec k](https://img.qammunity.org/2023/formulas/mathematics/college/xh8oammwtss2m37zgi53brinllmee69foq.png)
![\boxed{\mathrm{curl} \,\vec F = \vec 0}](https://img.qammunity.org/2023/formulas/mathematics/college/w7ylfwjdjx6njxxzff5pplcmrdx3rtrsfk.png)