203k views
1 vote
It’s delta math for it

It’s delta math for it-example-1

2 Answers

5 votes

We know that :


\bigstar \ \ \boxed{\mathsf{a^(-1) = (1)/(a)}}


\mathsf{Given \ question \ is : \frac{1}{(x^2 - 7)^{(-1)/(2)}}}

Using the above formula, we can write it as :


\implies \mathsf{\frac{1}{\frac{1}{(x^2 - 7)^{(1)/(2)}}}}


\implies \mathsf{(x^2 - 7)^{(1)/(2)}}


\implies \mathsf{√(x^2 - 7)}

User Ben Weaver
by
5.4k points
3 votes

Answer:


\sqrt{x^(2)-7

Explanation:

Negative exponents flip the fraction, fraction exponents imply a radical to the denominator's degree, so flip the fraction and take the square root of what is in parentheses

User Mitchus
by
6.1k points