Answer:
![267.95 cm^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/zgnob6oj8oufn9jmq2lpvs7vt2we9r3u8w.png)
Explanation:
We need to first find the radius of the sphere.
The surface area of a sphere is given as:
![A = 4\pi r^2](https://img.qammunity.org/2021/formulas/physics/college/sygma0kktotlekm3b9wpauq2pp93z7wo7p.png)
where r is the radius
Therefore:
![200.96 = 4 * 3.14 * r^2\\\\=> r^2 = 200.96 / 12.56\\\\r^2 = 16\\\\r = √(16) \\\\r = 4cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/7qoo295vcnxpo1nlr5pp54cx6xvgmpn959.png)
The radius of the sphere is 4 cm.
The volume of a sphere is given as:
![V = (4)/(3) \pi r^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lo18eznqlluew2jvwed2t1qqfrobktdp0j.png)
Therefore, the volume of the sphere of radius 4 cm is;
![V = (4)/(3) * 3.14 * 4^3\\\\V = 267.95 cm^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/p3j9r4c9o8t4dl1iafmgvlus9ey3goot7x.png)
The volume of the sphere is
![267.95 cm^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/zgnob6oj8oufn9jmq2lpvs7vt2we9r3u8w.png)