36.8k views
2 votes
Unit 8: Right Triangles & Trigonometry Homework 2: Special Right Triangles...Please Help!

Unit 8: Right Triangles & Trigonometry Homework 2: Special Right Triangles...Please-example-1
User Zlemini
by
8.4k points

2 Answers

0 votes

Answer:

8\sqrt{3},\ 12\sqrt{2},\ 12\sqrt{2}

Explanation:

User Coin Graham
by
7.9k points
1 vote

Answer:

  • x = 8√3
  • y = z = 12√2

Explanation:

We presume you want the values of x, y, and z.

__

There are two "special triangles" in geometry and trigonometry. They are the 30°-60°-90° right triangle that is half of an equilateral triangle, and the 45°-45°-90° isosceles right triangle that is half a square (cut by the diagonal).

The side ratios of these special triangles are relatively easy to remember. It is useful to memorize them.

__

For the isosceles right triangle, the side lengths are the same. The Pythagorean theorem tells you that if they are both 1, then the hypotenuse is ...

√(1²+1²) = √2

That is, the side lengths of the 45-45-90 triangle are in the ratio ...

1 : 1 : √2

__

For the triangle that is half an equilateral triangle, you know the hypotenuse is twice the length of the shortest side (since we got that short side by cutting a long side in half). Then the longer side can be found from the Pythagorean theorem:

√(2²-1²) = √3

That is, the side lengths of the 30-60-90 triangle are in the ratio ...

1 : √3 : 2

_____

In this problem, we're given the hypotenuse of a 30-60-90 triangle, so we know the short side of it (x) will be half that length:

x = (16√3)/2

x = 8√3

The hypotenuse of the 45-45-90 triangle will be √3 times x, so will be ...

long side of small triangle = (√3)(8√3) = 24

The shorter sides of that 45-45-90 triangle will be this value divided by the square root of 2, so are ...

y = z = 24/√2

We can multiply this by (√2)/(√2) to "rationalize the denominator".

y = z = 12√2

Unit 8: Right Triangles & Trigonometry Homework 2: Special Right Triangles...Please-example-1
Unit 8: Right Triangles & Trigonometry Homework 2: Special Right Triangles...Please-example-2
User Logical Fallacy
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories