187k views
0 votes
Find the slope of the line containing the points (3,1) and (5,7).
3

1 Answer

5 votes

Answer :

  • Slope is 3

Explaination :

As we know that slope is denoted by the letter m and is calculated by the formula:


  • \red{\boxed{\sf{Slope (m) \: = \: (y_(2) \: - \: y_(1) )/(x_(2) \: - \: x_(1)) }}} \: \bigstar

We have :

  • x₁ = 3
  • x₂ = 5
  • y₂ = 7
  • y₁ = 1

Putting the values :


: \: \longrightarrow \: \sf{Slope (m) \: = \: ( 7 \: - \:1 )/(5\: - \:3 ) } \\ \\ : \: \longrightarrow \: \sf{Slope (m) \: = \: (6 )/(5\: - \:3 ) } \\ \\ : \: \longrightarrow \: \sf{Slope (m) \: = \: (6 )/(2) } \\ \\ : \: \longrightarrow \: \sf{Slope (m) \: = \: \cancel(6 )/(2) } \\ \\ : \: \longrightarrow \: \pink{\bf{Slope (m) \: = \: 3 }}

Additional Information :

Centroid of a triangle :-


  • \boxed{ \sf{Centroid \: = \: (x_1 \: + \: x_2 \: + \: x_3)/(3) }} \: \pink\bigstar

Distance Formula :-


  • \huge \large \boxed{\sf{{d \: = \: \sqrt{(x _(2) - x _(1)) {}^(2) \: + \: (y _(2) - y _(1)) {}^(2) }}}} \: \red\bigstar

Midpoint of two points:-


  • \boxed{ \sf{M \: = \: (x_1 \: + \: x_2 )/(2) \: , \: (y_1 \: + \: y_2 )/(2)}} \: \pink\bigstar
User Crista
by
5.2k points