Answer:
Explanation:
We need to find the integrate of:
![\int^(\infty)_(0)xf(x)dx](https://img.qammunity.org/2021/formulas/mathematics/college/6mi87584jfx8n55etagllyrsfn14m376k0.png)
Let's use the integration by parts rule.
(1)
and
and
![v=\int f(x)dx](https://img.qammunity.org/2021/formulas/mathematics/college/2wuqbhsnza8fqttfbcy5c6muwsr070my00.png)
![f(x)=xe^{-x^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/lwo5mzkreyfn0nqdne7b2nwwefcz4fdpm1.png)
if we use change variable we can solve it, we can do
then
![da=-2xdx](https://img.qammunity.org/2021/formulas/mathematics/college/fwuxdubora8b5wjp9russyypp1epauigep.png)
So we have:
![v=-(1)/(2)\int e^(a)da](https://img.qammunity.org/2021/formulas/mathematics/college/hhfd6u6b99co58g0udl8a41i9wmqj8v4os.png)
![v=-(1)/(2)e^{-x^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/ww0s1lknutvbn59wpbdczhvzq82vmsb9e3.png)
Using this in (1) we have:
![\int^(\infty)_(0)xf(x)dx=(-(1)/(2)x*e^{-x^(2)})|^(\infty)_(0)-\int^(\infty)_(0) (-(1)/(2)e^{-x^(2)})dx](https://img.qammunity.org/2021/formulas/mathematics/college/6ve80pc2u8z95h1invt29hidsfrg55j7wy.png)
The used criteria to make the first term zero is because the exponential tends to zero faster than the x tends to infinity.
We know that the integral from 0 to infinity of
, hence:
![\int^(\infty)_(0)xf(x)dx=0+(1)/(2)(√(\pi))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/erwc2se5sdmbj9y8uqz774of13k0hts1lu.png)
I hope it helps you!