Answer:
1250 different committees can be formed
Explanation:
We are told that the club has 5 men and 6 women.
Now we want to choose number of men between 1 and 3 with both inclusive and number of women between 2 and 4 with both inclusive.
We'll use the combination formula;
C(n, r) = n! / [r! (n - r)!]
Where, n = population and r = picks
Thus, we'll multiply the results of the women and men together. And so we have:this gives us ;
(5C1 + 5C2 + 5C3) * (6C2 + 6C3 + 6C4) = (5 + 10 + 10) * (15 + 20 + 15) = 25 * 50 = 1250 ways