119k views
1 vote
Find the least common multiple (LCM) of 8y^6+ 144y^5+ 640y^4 and 2y^4 + 40y^3 + 200y^2.

You can give your answer in its factored form.

User Sinner
by
2.8k points

1 Answer

2 votes

Answer:

LCM =
8y^(4)(y+ 10)^(2)(y + 8)

Explanation:

Making factors of
8y^(6)+ 144y^(5)+ 640y^(4)

Taking
8y^(4) common:


\Rightarrow 8y^(4) (y^(2)+ 18y+ 80)

Using factorization method:


\Rightarrow 8y^(4) (y^(2)+ 10y + 8y + 80)\\\Rightarrow 8y^(4) (y (y+ 10) + 8(y + 10))\\\Rightarrow 8y^(4) (y+ 10)(y + 8))\\\Rightarrow \underline{2y^(2)} * 4y^(2) \underline{(y+ 10)}(y + 8)) ..... (1)

Now, Making factors of
2y^(4) + 40y^(3) + 200y^(2)

Taking
2y^(2) common:


\Rightarrow 2y^(2) (y^(2)+ 20y+ 100)

Using factorization method:


\Rightarrow 2y^(2) (y^(2)+ 10y+ 10y+ 100)\\\Rightarrow 2y^(2) (y (y+ 10) + 10(y + 10))\\\Rightarrow \underline {2y^(2) (y+ 10)}(y + 10) ............ (2)

The underlined parts show the Highest Common Factor(HCF).

i.e. HCF is
2y^(2) (y+ 10).

We know the relation between LCM, HCF of the two numbers 'p' , 'q' and the numbers themselves as:


HCF * LCM = p * q

Using equations (1) and (2):
\Rightarrow 2y^(2) (y+ 10) * LCM = 2y^(2) * 4y^(2)(y+ 10)(y + 8) * 2y^(2) (y+ 10)(y + 10)\\\Rightarrow LCM = 2y^(2) * 4y^(2)(y+ 10)(y + 8) * (y + 10)\\\Rightarrow LCM = 8y^(4)(y+ 10)^(2)(y + 8)

Hence, LCM =
8y^(4)(y+ 10)^(2)(y + 8)

User Ishadif
by
3.8k points