Hi!
We can solve this using the substitution method.
Given:
![y=2x-3\\4x-3y=31](https://img.qammunity.org/2023/formulas/mathematics/high-school/zuj55yl9etk3jggpqf5fmew2izr95wrl68.png)
Using the first question, we know that
is equal to
, so we can simply plug that value in to the second equation, like so:
![4x-3(2x-3)=31](https://img.qammunity.org/2023/formulas/mathematics/high-school/bbr17v6zty725x9il9yxlfp76nzgk8fevl.png)
Now, we can algebraically solve this for
![y](https://img.qammunity.org/2023/formulas/mathematics/high-school/39evgwyfztrxf0jqm5m4q20wdsbwaeh9qb.png)
![4x-3(2x-3)=31](https://img.qammunity.org/2023/formulas/mathematics/high-school/bbr17v6zty725x9il9yxlfp76nzgk8fevl.png)
Distribute.
![4x-6x+9=31](https://img.qammunity.org/2023/formulas/mathematics/high-school/rxrjx0odfyhfj0h1w3a498smt96fhuiwfv.png)
Add like terms.
![-2x+9=31](https://img.qammunity.org/2023/formulas/mathematics/high-school/3kpdbwwts1nz4cipee2oxq4u7d5dr5czi4.png)
Subtract
from both sides.
![-2x=22](https://img.qammunity.org/2023/formulas/mathematics/high-school/zeipk0kb56si3ostyg2hg3sp7l8b2b0rsv.png)
Divide both sides by
![-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/6r32gfn59zzqnd2b7wfav8dfc8jefwu0gf.png)
![x=-11](https://img.qammunity.org/2023/formulas/mathematics/college/gm0sxt403hh8k50haztnd9mk6zynae07ql.png)
Now plug in that value to the first equation:
![y=2(-11)-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/w15iorvcoobka189snme9bxn4sbj0zczfe.png)
Multiply.
![y=-22-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/fzpcnhwnbyc6yhr2q4dwshsjfs8thwhkf6.png)
Subtract.
![y=-25](https://img.qammunity.org/2023/formulas/mathematics/college/ob9a3ysu7mw4ps6366ki1e9est95kv00fx.png)
The solution is (-11, -25)