36.0k views
3 votes
Suppose that the function g is defined, for all real numbers, as follows.

g(x)= { -1/4x +1 If x< -2

-(x+1)^2+1 If -2 ≤ x ≤ 2

2 If x>2

Find g(-2), g(-1), and g(4)

1 Answer

4 votes

Answer:

a) g(-2) = 0

b) g(-1) =1

c) g(4) = 2

Explanation:

Given data


g(x) = (-1)/(4x+1) if x < -2


g(x) = - (x+1)^(2) +1 if -2\leq x\leq 2


g(x) = 2 if x >2

Step( i ):-


g(x) = - (x+1)^(2) +1 if -2\leq x\leq 2

put x = -2


g(-2) = -(-2+1)^(2) +1 = -(-1)^(2)+1 = -1+1 =0

g(-2) = 0

Step(ii):-


g(x) = - (x+1)^(2) +1 if -2\leq x\leq 2

Put x = -1


g(-1) = -(-1+1)^(2) +1 = -(0)^(2)+1 = -0+1 =1

g(-1) =1

Step(iii):-


g(x) = 2 if x >2

g(4) = 2

User Romah
by
4.5k points