26.3k views
5 votes
Identify all solutions for a triangle with A - 38°, b= 10, and a=8. Round to the nearest tenth.

2 Answers

3 votes

Answer:

B= 50.35°

C=91.65°

c= 12.77

Explanation:

Given:

A = 38°

b= 10 and a=8.

Required:

angles B and C, and sides c.

By using the rule for law of sines


sin B=b(sinA)/(a) = ((10)(0.62))/(8) => 0.77

B=
sin^-^1(0.77) => 50.35°

For angle C:

angle C= 180 - A - B => 180 - 38 - 50.35

=91.65°

For side c:

c=
a((sinC)/(sinA) ) => 8(
(0.99)/(0.62))

c= 12.77

3 votes

Answer:

A=38 degrees, B=50 degrees, C=92 degrees

a=8, b=10, c=13

Explanation:

Given a triangle where: A=38°, b= 10, and a=8.

Using Law of Sines


(a)/(sin A) =(b)/(sin B) \\(8)/(sin 38) =(10)/(sin B) \\$Cross multiply\\8 X sin B=10 X Sin 38\\Sin B=(10 X sin 38)/ 8\\B=arcsin[(10 X sin 38)/ 8]\\B\approx50^\circ


\angle A+\angle B+\angle C=180^\circ($Sum of angles in a triangle)\\38+50+\angle C=180^\circ\\\angle C=180-88\\\angle C=92^\circ


(a)/(sin A) =(c)/(sin C) \\(8)/(sin 38) =(c)/(sin 92) \\$Cross multiply\\8 X sin 92=c X Sin 38\\c=(8 X sin 92)/ sin38\\c\approx13

User Brambo
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories