Answer:
volume of metal =
![141 \pi\ inch^(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mgv2xu6uh3hv1cfpvmle0gu5fgky2qnr0o.png)
Surface area of cylinder to be powder-coated=
![1133.875\pi\ inch^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6akngvg3u77mx8gco619j1e018thw47z5q.png)
Explanation:
Radius of outer circle, R = 6 inch
Radius of inner circle, r = 5.75 inch
Height of cylinder, h = 4 ft = 4 * 12 inch = 48 inch
Calculating the volume of metal used to build this pipe:
![\text{Volume of hollow cylinder} = \pi R^(2)h - \pi r^(2)h](https://img.qammunity.org/2021/formulas/mathematics/high-school/62zw59mc5n7rxxjxrg45zbglpmcurx7u0p.png)
![\Rightarrow \pi 48(6^(2) - 5.75^(2))\\\Rightarrow \pi 48(2.9375)\\\Rightarrow 141 \pi\ inch^(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ulslknci00unqokg2gd7jokla304hos7jy.png)
Inner and outer surfaces are to be powder-coated.
Total surface area = Lateral surface area + Area of solid bases
![\Rightarrow 2\pi Rh + 2 \pi rh + 2(\pi R^(2) - \pi r^(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/6roghnagn2h1xhde5154bc2ntcusgt1671.png)
![\Rightarrow 2\pi * 48 (6 + 5.75) + 2\pi(6^(2) - 5.75^(2))\\\Rightarrow \pi (96 * 11.75 + 2.9375 * 2)\\\Rightarrow 1133.875 \pi\ inch^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/568u0tknqy2nii5o9gw5u5als9dzpp78d4.png)
So, volume of metal =
![141 \pi inch^(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/bd5koa53mxepnm6ddkwxfvllbvicqyzpmt.png)
Surface area of cylinder to be powder-coated=
![1133.875 \pi\ inch^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tqvtzgy8c47ybjwrd7sf7xokq4vesd3793.png)