Answer:
The 90% confidence interval of the population proportion is (0.43, 0.56).
Explanation:
The (1 - α)% confidence interval for population proportion p is:
![CI=\hat p\pm z_(\alpha/2)\ \sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/ckw1een28oc2gjr6p0e7n1gdqwq7mu68kg.png)
The information provided is:
X = 74
n = 150
Confidence level = 90%
Compute the value of sample proportion as follows:
![\hat p=(X)/(n)=(74)/(150)=0.493](https://img.qammunity.org/2021/formulas/mathematics/college/oi434fzvfl0ybcd3q9xmgke5l2lvwq4ho3.png)
Compute the critical value of z for 90% confidence level as follows:
![z_(\alpha/2)=z_(0.10/2)=z_(0.05)=1.645](https://img.qammunity.org/2021/formulas/mathematics/high-school/yg185iyh5galc9i4t1rm2driw4kbsjbu9g.png)
*Use a z-table.
Compute the 90% confidence interval of the population proportion as follows:
![CI=\hat p\pm z_(\alpha/2)\ \sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/ckw1een28oc2gjr6p0e7n1gdqwq7mu68kg.png)
![=0.493\pm 1.645* \sqrt{(0.493(1-0.493))/(150)}\\\\=0.493\pm 0.0672\\\\=(0.4258,\ 0.5602)\\\\\approx (0.43,\ 0.56)](https://img.qammunity.org/2021/formulas/mathematics/college/76jug71o9prqztgleuigil67jmm4fi8gfn.png)
Thus, the 90% confidence interval of the population proportion is (0.43, 0.56).