Answer:
1)
![L \propto T^2](https://img.qammunity.org/2021/formulas/mathematics/college/kgbxj88x7jl8oc8r1nmr46pls7wazfl5t1.png)
Using the condition given:
![2.205 m = K (3)^2](https://img.qammunity.org/2021/formulas/mathematics/college/lqrivsaz4500my1vhhbla387mqivcus88u.png)
![K = 0.245 \approx (g)/(4\pi^2)](https://img.qammunity.org/2021/formulas/mathematics/college/gf5qzwms4v4657itk4ayur9k0lfxjl5e0f.png)
So then if we want to create an equation we need to do this:
![L = K T^2](https://img.qammunity.org/2021/formulas/mathematics/college/nfa3mtzsgvs01n066jygatlv40hhhkwh28.png)
With K a constant. For this case the period of a pendulumn is given by this general expression:
![T = 2\pi \sqrt{(L)/(g)}](https://img.qammunity.org/2021/formulas/physics/college/ncitlbc7vo6nn9cdlyafht55391be0mr9k.png)
Where L is the length in m and g the gravity
.
2)
![T = 2\pi \sqrt{(L)/(g)}](https://img.qammunity.org/2021/formulas/physics/college/ncitlbc7vo6nn9cdlyafht55391be0mr9k.png)
If we square both sides of the equation we got:
![T^2 = 4 \pi^2 (L)/(g)](https://img.qammunity.org/2021/formulas/mathematics/college/gixfy3zdo6p1ditdvczbq8sztjkp3uswnv.png)
And solving for L we got:
![L = (g T^2)/(4 \pi^2)](https://img.qammunity.org/2021/formulas/mathematics/college/u3jq5bo5m9en4w2qwuuh291ufxg9aw8f12.png)
Replacing we got:
![L =(9.8 (m)/(s^2) (5s)^2)/(4 \pi^2) = 6.206m](https://img.qammunity.org/2021/formulas/mathematics/college/opwztispwnfd7c7ump1fprkc5ky07k7j51.png)
3)
![T = 2\pi \sqrt{(0.98m)/(9.8(m)/(s^2))}= 1.987 s](https://img.qammunity.org/2021/formulas/mathematics/college/bm4x9zd08crxe2n62993op3j0qzwfctpfw.png)
Explanation:
Part 1
For this case we know the following info: The length, l cm, of a simple pendulum is directly proportional to the square of its period (time taken to complete one oscillation), T seconds.
![L \propto T^2](https://img.qammunity.org/2021/formulas/mathematics/college/kgbxj88x7jl8oc8r1nmr46pls7wazfl5t1.png)
Using the condition given:
![2.205 m = K (3)^2](https://img.qammunity.org/2021/formulas/mathematics/college/lqrivsaz4500my1vhhbla387mqivcus88u.png)
![K = 0.245 \approx (g)/(4\pi^2)](https://img.qammunity.org/2021/formulas/mathematics/college/gf5qzwms4v4657itk4ayur9k0lfxjl5e0f.png)
So then if we want to create an equation we need to do this:
![L = K T^2](https://img.qammunity.org/2021/formulas/mathematics/college/nfa3mtzsgvs01n066jygatlv40hhhkwh28.png)
With K a constant. For this case the period of a pendulumn is given by this general expression:
![T = 2\pi \sqrt{(L)/(g)}](https://img.qammunity.org/2021/formulas/physics/college/ncitlbc7vo6nn9cdlyafht55391be0mr9k.png)
Where L is the length in m and g the gravity
.
Part 2
For this case using the function in part a we got:
![T = 2\pi \sqrt{(L)/(g)}](https://img.qammunity.org/2021/formulas/physics/college/ncitlbc7vo6nn9cdlyafht55391be0mr9k.png)
If we square both sides of the equation we got:
![T^2 = 4 \pi^2 (L)/(g)](https://img.qammunity.org/2021/formulas/mathematics/college/gixfy3zdo6p1ditdvczbq8sztjkp3uswnv.png)
And solving for L we got:
![L = (g T^2)/(4 \pi^2)](https://img.qammunity.org/2021/formulas/mathematics/college/u3jq5bo5m9en4w2qwuuh291ufxg9aw8f12.png)
Replacing we got:
![L =(9.8 (m)/(s^2) (5s)^2)/(4 \pi^2) = 6.206m](https://img.qammunity.org/2021/formulas/mathematics/college/opwztispwnfd7c7ump1fprkc5ky07k7j51.png)
Part 3
For this case using the function in part a we got:
![T = 2\pi \sqrt{(L)/(g)}](https://img.qammunity.org/2021/formulas/physics/college/ncitlbc7vo6nn9cdlyafht55391be0mr9k.png)
Replacing we got:
![T = 2\pi \sqrt{(0.98m)/(9.8(m)/(s^2))}= 1.987 s](https://img.qammunity.org/2021/formulas/mathematics/college/bm4x9zd08crxe2n62993op3j0qzwfctpfw.png)