Answer:
Explanation:
Q1.
a) Width of field
The formula for the area of a rectangle is
A = lw
Data
A = 800 a
l = 0.8 km
Calculations
(i) Convert all measurements to metres
A = 800 a × 100 m²/a = 80 000 m²
l = 0.8 km × 1000 m/1 km = 800 m
(ii) Calculate the width
![\begin{array}{rcl}A & = & lw\\80000 & = & 800w\\w & = & (80000)/(800)\\\\& = & \textbf{100 m}\\\end{array}\\\text{The width of the field is $\large \boxed{\textbf{100 m}}$}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ai22fa30ftoobdsc3mdqey7wbchjzczqpw.png)
b) Perimeter of field
The formula for the perimeter of a rectangle is
![\begin{array}{rcl}P & = & 2(l + w)\\& = &2(800 + 100)\\& = & 2(900)\\& = & \text{1800 m}\\& = & \textbf{1.8 km}\\\end{array}\\\text{The length of the fence around the field is $\large \boxed{\textbf{1.8 km}}$}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6u14ejl72h5ee9h4m8uxjbjk6ztydxy339.png)
Q2.
a) Number of tiles
Data:
l = 5 m
w = 32 dm
h = 3 m
Tile edge = 20 cm
(i) Convert all measurements to metres
w = 32 dm × (1 m/10 dm) = 3.2 m
Tile edge = 20 cm × (1 m/100 cm) = 0.20 m
(ii) Area of pool bottom
![\begin{array}{rcl}A& = & 5* 3.2\\& = & \textbf{16 m}^(2)\\\end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/2mhtnjy39p1zsday8qo0htelf5moow7be2.png)
(iii) Area of one tile
![\begin{array}{rcl}A & = & s^(2)\\ & = & 0.20^(2)\\& = & \textbf{0.04 m}^{\mathbf{2}}\\\end{array}](https://img.qammunity.org/2021/formulas/mathematics/high-school/hnp9igf90tenxd30ozwn3m303onglfymwi.png)
(iv) Number of tiles
![\text{No. of tiles } = \text{16 m }^(2) * \frac{\text{1 tile}}{\text{0.04 m}^(2)} = \textbf{400 tiles}\\\text{It will take $\large \boxed{\textbf{400}}$ tiles to cover the bottom of the pool.}](https://img.qammunity.org/2021/formulas/mathematics/high-school/lfug1cre3jm63k1q8c6wlaz3303zllnuy4.png)
b) Volume of pool
The formula for the volume of a rectangular prism is\begin{array}{rcl}
![\begin{array}{rcl}V & = & lwh\\& = &5 * 3.2 * 3\\& = & \textbf{48 m}^(3)\\\end{array}\\\text{The volume of the pool is $\large \boxed{\textbf{48 m}^{\mathbf{3}}}$}](https://img.qammunity.org/2021/formulas/mathematics/high-school/9ku5wwuv85vrjpq3t2btiga4xs9f2473az.png)