135k views
0 votes
Una elipse se describe segun la ecuacion (x-2)2 +(y-1)2 halla las coordenadas de los vertices, focos, las longitudes de las ejes mayor y menor, el valor de la excentricidad, la longitud de los lados rectos y realiza la representacion grafica

1 Answer

4 votes

Answer:

The equation of the ellipse is


((x-2)^(2) )/(100) +((y-1)^(2) )/(36) =1

This is the explicit form of an ellipse, where
h=2 and
k=1, which means the center of the ellipse is at
C(2,1).

Remember that the greatest denominator in an ellipse is the parameter
a^(2) and the least is
b^(2), so


a^(2)=100 \implies a=10\\ b^(2)=36 \implies b=6

The length of the major axis is:
2a=2(10)=20

The length of the minor axis is:
2b=2(6)=12

Vertices are
(-8,1) and
(12,1), because the center is not the origin of the coordinate system so, the vertices are displaced. The least axis vertices are:
(2,7) and
(2,-5).

The foci are on the major axis, so their vertical coordinate is 1, their horizontal coordinate depends on parameter
c, which is related as the following


a^(2)=b^(2) +c^(2) \\100-36=c^(2)\\ c=√(64)\\ c=8

Therefore, the foci coordinates are
F(10,1) and
F'(-6,1).

The ladus rectus is


LR=(2b^(2) )/(a)=(2(36))/(10)=7.2

The eccentricity is


e=(c)/(a)=(8)/(10)=0.8

Additionally, the graph is attached, there you can observe some elements of the ellipse.

(Remember, all elements of an ellipse depend on the three parameters a, b and c, that's what you need to find first)

Una elipse se describe segun la ecuacion (x-2)2 +(y-1)2 halla las coordenadas de los-example-1
User Synxmax
by
5.1k points