Answer:
(a) when x = 2: width = 2 units and length = 5 units
(b) 546 units²
Explanation:
Given expression:
![6x^2-5x-4](https://img.qammunity.org/2023/formulas/mathematics/college/b1r2rbhgc5wys7hpdqconwgyvsl7hktf42.png)
Part (a)
To factor a quadratic in the form
![ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/knmog89o03f8dx9fluvbqb64q9rt61y6kp.png)
Find 2 two numbers that multiply to
and sum to
![b](https://img.qammunity.org/2023/formulas/mathematics/college/zemelnbvlkn3xzff1wg7xgbs4kea2l4s98.png)
Two numbers that multiply to -24 and sum to -5: -8 and 3
Rewrite
as the sum of these 2 numbers:
![\implies 6x^2+3x-8x-4](https://img.qammunity.org/2023/formulas/mathematics/college/hzbwlesm0ohf7n662zkjtm9effnn4m43wl.png)
Factorize the first two terms and the last two terms separately:
![\implies 3x(2x+1)-4(2x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/luehm8wq0ztyiiw2ioabxk3bzd5rta5bsk.png)
Factor out the common term
:
![\implies (3x-4)(2x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/6jjxhshuz4f4v226w9c057h3r6y02t4o1g.png)
Therefore:
![\implies x=(4)/(3), \: x=-(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/863o8sh0k47i8fr7z3avmxdhuop3pivao3.png)
As distance is positive,
![x > (4)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/a5belqhuioxqhfc4ad7kgo4kgmp3n1qkg8.png)
Let
![x=2](https://img.qammunity.org/2023/formulas/mathematics/college/6ij5lvx45qkbn22ki7umkb6rdcr9rugcgd.png)
![\implies (3(2)-4)(2(2)+1)](https://img.qammunity.org/2023/formulas/mathematics/college/dh8n0toy380y7lnhpzy5p9mti4kni9tw6s.png)
![\implies (2)(5)](https://img.qammunity.org/2023/formulas/mathematics/college/2v84984ahl43zlwwg4f6n7800plx07lku6.png)
Therefore, possible dimensions of the rectangle are:
width = 2 units
length = 5 units
Part (b)
Substitute
into the equation:
![\begin{aligned}\implies 6(10)^2-5(10)-4&=600-50-4\\&=546\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/jzn2lj5y6yudcx4hios8a5pgccqi17naa7.png)