191k views
2 votes
The LList class is (mostly) the same one discussed in lecture, but you must write a sort() function that uses one of the three inefficient sorts discussed in lecture. The function should sort the list contents from lowest to highest value using bubble sort, selection sort, or insertion sort. Since the original linked list code produced a sorted list, this version has been modified such that (1) insert() adds each new item to the start of the list, not in order and (2) remove() searches the entire list, since it can't assume the list is ordered. Also, display() has been modified to print all list contents on a single line, not one value per line.

The only file you may modify is LList.cpp, which contains space to write the definition for the sort() function, as well as the definitions of standard LList functions covered previously.
The other two files, LList.h and LList_test_main.cpp, are read-only. LList.h contains the LList class definition, while the other file exists solely to test the code you write.
LList.h
#ifndef LLIST_H
#define LLIST_H
#include
using std::ostream;
class LList {
public:
/***** FUNCTION TO BE WRITTEN *****/
void sort(); // Sort linked list using bubble, insertion, or selection sort
/***** FUNCTIONS BELOW THIS LINE ARE ALREADY WRITTEN--DO NOT MODIFY *****/
LList(); // Default constructor
~LList(); // Destructor
bool empty(); // True if list is empty
void insert(int v); // Add new value to list
void remove(int v); // Remove node with v
void display(ostream &out); // Print contents of list
// (could of course write as
// overloaded operator)
private:
/****************************************************************
Slightly different setup than we've seen before, as Node class
is defined *inside* LList class.
Benefits:
By making "Node" a member of LList, LList functions can
directly refer to Node data members val and next. No
need to write/call accessor functions for Node, so
fewer files in solution + no function call overhead on
simple data accesses. Node data members are "public" to
LList functions but "private" to outside world.
Downside:
This implementation of Node can *only* be used inside LList.
If you want Node objects in other classes, have to redefine.
****************************************************************/
class Node {
public:
int val; // Value in each node--could be generalized
// using templates
Node *next; // Pointer to next node
};
Node *first; // Pointer to first node
};
#endif
LList.cpp
#include "LList.h"
using namespace std;
/***** FUNCTION TO BE WRITTEN *****/
void LList::sort() { // Sort linked list using bubble, insertion, or selection sort
/***** ADD YOUR OWN SOLUTION *****/
}
/***** FUNCTIONS BELOW THIS LINE ARE ALREADY WRITTEN--DO NOT MODIFY *****/
// Default constructor
LList::LList() : first(NULL)
{}
// Destructor
LList::~LList() {
Node *temp;
while (first != NULL) {
temp = first;
first = first->next;
delete temp;
}
}
// True if list is empty
bool LList::empty() {
return (first == NULL);
}
// Add new value to list
/***** MODIFIED TO CREATE UNORDERED LIST *****/
void LList::insert(int v) {
// Allocate new node and place at beginning of list
Node* newNode = new Node;
newNode->val = v;
newNode->next = first;
first = newNode;
}
// Remove node with v
void LList::remove(int v) {
Node *prev; // Predecessor of node to be deleted
Node *cur; // Node to be deleted
// Find node, if it's in list
cur = first;
prev = NULL;
while (cur != NULL) { /***** MODIFIED--NO LONGER ASSUMES LIST ORDERED *****/
prev = cur;
cur = cur->next;
}
// Didn't find node
if (cur == NULL || cur->val > v) {
cout << "Node with value " << v << " not found\\";
return;
}
// Otherwise, remove node
if (prev == NULL) // Special case for first node
first = cur->next;
else
prev->next = cur->next;
delete cur;
}
// Display contents of list
void LList::display(ostream &out) {
Node *ptr = first;
while (ptr != NULL) {
out << ptr->val << ' ';
ptr = ptr->next;
}
out << '\\';
}
LList_test_main.cpp
#include "LList.h"
#include
#include
using namespace std;
int main() {
LList L1, L2; // Linked lists to use for testing
unsigned i; // Loop indexes
int seed; // RNG seed
// RNG seed--ensures you'll get same "random" values across
// multiple runs with same seed
cout << "Seed value: ";
cin >> seed;
srand(seed);
// Fill lists
for (i = 0; i < 10; i++) {
L1.insert(rand() % 50);
L2.insert(rand() % 50);
}
// Print lists before sorting
cout << "Before sorting:\\L1: ";
L1.display(cout);
cout << "\\L2: ";
L2.display(cout);
// Sort and print lists again
L1.sort();
L2.sort();
cout << "After sorting:\\L1: ";
L1.display(cout);
cout << "\\L2: ";
L2.display(cout);
return 0;
}

User Reavis
by
3.4k points

1 Answer

3 votes

Answer:

see explaination

Step-by-step explanation:

#include <iostream>

#include <string>

using namespace std;

class LinkedList{

class Node{

public :

int data;

Node* next;

Node(int data){

this->data = data;

next = NULL;

}

};

public :

Node *head;

LinkedList(){

this->head = NULL;

}

void insert(int d){

Node* new_node = new Node(d);

new_node->next = head;

head = new_node;

}

// sort the list with selection sort algorithm.

// Pick the smallest element in the unsorted array and place in the first element in the unsorted.

void sort_list(){

if (head == NULL){

return;

}

Node* current = head;

while (current->next != NULL){

Node* min_node = current;

Node* traverse = current->next;

while(traverse != NULL){

if(traverse->data < min_node->data){

min_node = traverse;

}

traverse = traverse->next;

}

int temp = current->data;

current->data = min_node->data;

min_node->data = temp;

current = current->next;

}

}

void print_list(){

Node* current = head;

while(current !=NULL){

cout<<current->data<<" ";

current = current->next;

}

cout<<"\\";

}

};

int main(){

LinkedList ll;

for(int i=0;i<10;i++){

ll.insert(i);

}

ll.print_list();

cout<<"*******************************************\\";

ll.sort_list();

ll.print_list();

cout<<"*******************************************\\";

}

User Michaelitoh
by
3.6k points