Answer:
Step-by-step explanation:
a. To find the gravitational potential energy you take into account the potential energy generated by a piece of mass in the disk. You also take into account that the gravitational field at point A points to the center of the disk. Then, you can consider an element of the force, Fx:
![F_x=\int G(mdM)/(R^2+a^2)=\int G(m\rho r dr d\theta )/(R^2+a^2)](https://img.qammunity.org/2021/formulas/physics/college/6h9g9o07dpzpksnysu6x45wbnvf90uuaqc.png)
m: mass of a body at a distance of "a" perpendicular to the disk.
R:radius of the disk
M: mass of the disk
G: Cavendish's constant
by solving the integral you obtain:
![F_x=2(GmM)/(R^2)[1-cos\theta]](https://img.qammunity.org/2021/formulas/physics/college/9afboa3oqk08v86s6r4a5kcikyyvukqa3a.png)
(1)
To find the gravitational energy you use:
![U=-\int F_x dx=-\int[2GmM(1-(x)/(√(R^2+x^2)))]dx\\\\U=-2GmM[x+√(R^2+x^2)]\\\\U=-2GmM[a+√(R^2+a^2)]](https://img.qammunity.org/2021/formulas/physics/college/vjz5rtz1rdop4rqgpme7nrz5nbvyjrxpif.png)
you replace the values of the parameters in the point A:
![U=-2(6.67*10^(-11))(250)(5.98*10^(24))[(7.83*10^6)+(√((7.83*10^6)^2+(6.25*10^7)^2))]\\\\U=-1.41*10^(25)J](https://img.qammunity.org/2021/formulas/physics/college/i4495lymdy8hzb5582lo9npm4tt2x9g6cp.png)
b. For point B you have a=0.
![U=-2(6.67*10^(-11))(250)(5.98*10^(24))[(7.83*10^6)+(√(((7.83*10^6)^2))]\\\\U=-3.12*10^(24)J](https://img.qammunity.org/2021/formulas/physics/college/41qr10gv5qbsq1qn0af2c6y557v0gcjvit.png)
c. To find the kinetic energy you use:
![W_n=\Delta K\\\\F_xd=(1)/(2)m(v_f^2-v_o^2)](https://img.qammunity.org/2021/formulas/physics/college/4ppgwna657uv65a5cjpv6zoi0wu8sgco1a.png)
However, the net work is also the difference between the gravitaional potential energies calculated in the previous steps.